login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318581
Expansion of 1/(1 + x*Product_{k>=1} 1/(1 - x^k)).
5
1, -1, 0, -1, 0, -1, 1, -1, 3, -1, 5, -2, 7, -7, 9, -16, 11, -29, 20, -46, 45, -66, 94, -95, 175, -161, 294, -307, 458, -594, 715, -1096, 1193, -1891, 2132, -3106, 3916, -5063, 7083, -8484, 12347, -14770, 20867, -26310, 34898, -46771, 58967, -81665, 101680, -139951, 178094, -237620
OFFSET
0,9
LINKS
FORMULA
G.f.: 1/(1 + x*Sum_{k>=0} A000041(k)*x^k).
a(0) = 1; a(n) = -Sum_{k=1..n} A000041(k-1)*a(n-k).
EXAMPLE
G.f. = 1 - x - x^3 - x^5 + x^6 - x^7 + 3*x^8 - x^9 + 5*x^10 - 2*x^11 + 7*x^12 - 7*x^13 + ...
MAPLE
seq(coeff(series((1+x*mul((1-x^k)^(-1), k=1..n))^(-1), x, n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Aug 30 2018
MATHEMATICA
nmax = 51; CoefficientList[Series[1/(1 + x Product[1/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = -Sum[PartitionsP[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 51}]
CROSSREFS
Cf. similar sequences: A067687, A299105, A299106, A299208, A302017, A318582, A331484.
Sequence in context: A174239 A066249 A065168 * A065277 A249139 A059971
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 29 2018
STATUS
approved