login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302017
Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k-1))).
6
1, 1, 2, 3, 6, 11, 21, 39, 73, 137, 257, 482, 903, 1693, 3173, 5948, 11149, 20899, 39174, 73430, 137641, 258002, 483614, 906513, 1699219, 3185111, 5970352, 11191163, 20977346, 39321116, 73705711, 138158128, 258971363, 485430483, 909918190, 1705601814, 3197075934, 5992778881, 11233201667
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Self-Conjugate Partition
FORMULA
G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + (-x)^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A000700(k-1)*a(n-k).
a(n) ~ c / r^n, where r = 0.5334880525001986092393688937248506539793821912... is the root of the equation 1 + r - r^2 * QPochhammer(-1/r, r^2) = 0 and c = 0.48000092330632206397886602198643227268597451507794232644772186731542555975... = (2*(1 + r)*Log[r])/(2*(2 + r)*Log[r] + (1 + r)*Log[1 - r^2] + (1 + r) * QPolyGamma[Log[-1/r] / Log[r^2], r^2] + 4*r^4*Log[r] * Derivative[0,1][QPochhammer][-1/r, r^2]). - Vaclav Kotesovec, Mar 31 2018
MATHEMATICA
nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 38; CoefficientList[Series[1/(1 - x QPochhammer[x^2]^2/(QPochhammer[x] QPochhammer[x^4])), {x, 0, nmax}], x]
CROSSREFS
Antidiagonal sums of absolute values of A286352.
Sequence in context: A018175 A316356 A049856 * A113409 A092684 A366107
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 30 2018
STATUS
approved