login
A092684
First column and main diagonal of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
10
1, 1, 2, 3, 6, 11, 21, 39, 74, 141, 272, 527, 1026, 2002, 3914, 7659, 14996, 29369, 57531, 112727, 220963, 433342, 850386, 1670011, 3282259, 6456475, 12711413, 25047465, 49396116, 97490480, 192552549, 380565123, 752619506, 1489234257
OFFSET
0,3
COMMENTS
The self-convolution forms A100938. - Paul D. Hanna, Nov 23 2004
The limit of the matrix power A011973^n, as n->inf, results in a single column vector equal to this sequence. - Paul D. Hanna, May 03 2006
FORMULA
Invariant under the transformation of Fibonacci triangle A011973(n,k)=C(n-k,k): a(n) = Sum_{k=0..[n/2]} C(n-k,k)*a(k). - Paul D. Hanna, May 03 2006
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*a(k). - Vladeta Jovovic, May 07 2006
G.f. satisfies: A(x) = A( x^2/(1-x) )/(1-x). - Paul D. Hanna, Jul 10 2006
EXAMPLE
a(8) = Sum_{k=0..[8/2]} C(n-k,k)*a(k)
= C(8,0)*a(0) +C(7,1)*a(1) +C(6,2)*a(2) +C(5,3)*a(3) +C(4,4)*a(4)
= 1*1 + 7*1 + 15*2 + 10*3 + 1*6 = 74.
PROG
(PARI) {T(n, k)=if(n<0 || k>n, 0, if(n==0 && k==0, 1, if(n==1 && k<=1, 1, if(k==n, T(n, 0), T(n-1, k)+T(n-1, k+1)))))} a(n)=T(n, 0)
(PARI) a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*a(k))) - Paul D. Hanna, May 03 2006
(PARI) {a(n)=local(A=1+x); for(i=0, n\2, A=subst(A, x, x^2/(1-x+x*O(x^n)))/(1-x)); polcoeff(A, n)} - Paul D. Hanna, Jul 10 2006
CROSSREFS
Cf. A011973 (Fibonacci polynomials), A100938 (self-convolution).
Sequence in context: A049856 A302017 A113409 * A366107 A123915 A132832
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2004
STATUS
approved