OFFSET
0,3
COMMENTS
The self-convolution forms A100938. - Paul D. Hanna, Nov 23 2004
The limit of the matrix power A011973^n, as n->inf, results in a single column vector equal to this sequence. - Paul D. Hanna, May 03 2006
FORMULA
Invariant under the transformation of Fibonacci triangle A011973(n,k)=C(n-k,k): a(n) = Sum_{k=0..[n/2]} C(n-k,k)*a(k). - Paul D. Hanna, May 03 2006
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*a(k). - Vladeta Jovovic, May 07 2006
G.f. satisfies: A(x) = A( x^2/(1-x) )/(1-x). - Paul D. Hanna, Jul 10 2006
EXAMPLE
a(8) = Sum_{k=0..[8/2]} C(n-k,k)*a(k)
= C(8,0)*a(0) +C(7,1)*a(1) +C(6,2)*a(2) +C(5,3)*a(3) +C(4,4)*a(4)
= 1*1 + 7*1 + 15*2 + 10*3 + 1*6 = 74.
PROG
(PARI) {T(n, k)=if(n<0 || k>n, 0, if(n==0 && k==0, 1, if(n==1 && k<=1, 1, if(k==n, T(n, 0), T(n-1, k)+T(n-1, k+1)))))} a(n)=T(n, 0)
(PARI) a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*a(k))) - Paul D. Hanna, May 03 2006
(PARI) {a(n)=local(A=1+x); for(i=0, n\2, A=subst(A, x, x^2/(1-x+x*O(x^n)))/(1-x)); polcoeff(A, n)} - Paul D. Hanna, Jul 10 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2004
STATUS
approved