OFFSET
0,2
COMMENTS
This triangle is the cascadence of binomial (1+2x). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. of the triangle, A(x,y), is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) satisfies: H(x) = G*H(x*G^d)/x and G=G(x) satisfies: G(x) = x*F(G(x)) so that G = series_reversion(x/F(x)); also, H(x) is the g.f. of column 0. - Paul D. Hanna, Jul 17 2006
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..495
FORMULA
T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k<n, with T(n, n)=T(n, 0), T(0, 0)=1, T(0, 1)=T(1, 0)=2.
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - Paul D. Hanna, Jul 17 2006
EXAMPLE
Rows begin:
1;
2, 2;
6, 4, 6;
16, 14, 12, 16;
46, 40, 40, 32, 46;
132, 120, 112, 110, 92, 132;
384, 352, 334, 312, 316, 264, 384;
1120, 1038, 980, 940, 896, 912, 768, 1120;
3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278;
9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612;
28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ...
Convolution of each row with {1,2} results in the triangle:
1, 2;
2, 6, 4;
6, 16, 14, 12;
16, 46, 40, 40, 32;
46, 132, 120, 112, 110, 92;
132, 384, 352, 334, 312, 316, 264;
384, 1120, 1038, 980, 940, 896, 912, 768; ...
which, when flattened, equals the original triangle in flattened form.
PROG
(PARI) T(n, k)=if(n<0 || k>n, 0, if(n==0 && k==0, 1, if(n==1 && k<=1, 2, if(k==n, T(n, 0), 2*T(n-1, k)+T(n-1, k+1)))))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Generate Triangle by the G.F.: */
{T(n, k)=local(A, F=1+2*x, d=1, G=x, H=1+2*x, S=ceil(log(n+1)/log(d+1))); for(i=0, n, G=x*subst(F, x, G+x*O(x^n))); for(i=0, S, H=subst(H, x, x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H, x, x*y^d +x*O(x^n)))/(x*subst(F, x, y)-y); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 04 2004
STATUS
approved