login
A092686
Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.
12
1, 2, 2, 6, 4, 6, 16, 14, 12, 16, 46, 40, 40, 32, 46, 132, 120, 112, 110, 92, 132, 384, 352, 334, 312, 316, 264, 384, 1120, 1038, 980, 940, 896, 912, 768, 1120, 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278, 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758
OFFSET
0,2
COMMENTS
First column and main diagonal forms A092687. Row sums form A092688.
This triangle is the cascadence of binomial (1+2x). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. of the triangle, A(x,y), is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) satisfies: H(x) = G*H(x*G^d)/x and G=G(x) satisfies: G(x) = x*F(G(x)) so that G = series_reversion(x/F(x)); also, H(x) is the g.f. of column 0. - Paul D. Hanna, Jul 17 2006
LINKS
FORMULA
T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k<n, with T(n, n)=T(n, 0), T(0, 0)=1, T(0, 1)=T(1, 0)=2.
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - Paul D. Hanna, Jul 17 2006
EXAMPLE
Rows begin:
1;
2, 2;
6, 4, 6;
16, 14, 12, 16;
46, 40, 40, 32, 46;
132, 120, 112, 110, 92, 132;
384, 352, 334, 312, 316, 264, 384;
1120, 1038, 980, 940, 896, 912, 768, 1120;
3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278;
9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612;
28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ...
Convolution of each row with {1,2} results in the triangle:
1, 2;
2, 6, 4;
6, 16, 14, 12;
16, 46, 40, 40, 32;
46, 132, 120, 112, 110, 92;
132, 384, 352, 334, 312, 316, 264;
384, 1120, 1038, 980, 940, 896, 912, 768; ...
which, when flattened, equals the original triangle in flattened form.
PROG
(PARI) T(n, k)=if(n<0 || k>n, 0, if(n==0 && k==0, 1, if(n==1 && k<=1, 2, if(k==n, T(n, 0), 2*T(n-1, k)+T(n-1, k+1)))))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Generate Triangle by the G.F.: */
{T(n, k)=local(A, F=1+2*x, d=1, G=x, H=1+2*x, S=ceil(log(n+1)/log(d+1))); for(i=0, n, G=x*subst(F, x, G+x*O(x^n))); for(i=0, S, H=subst(H, x, x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H, x, x*y^d +x*O(x^n)))/(x*subst(F, x, y)-y); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 04 2004
STATUS
approved