login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.
12

%I #18 Jun 13 2017 21:56:02

%S 1,2,2,6,4,6,16,14,12,16,46,40,40,32,46,132,120,112,110,92,132,384,

%T 352,334,312,316,264,384,1120,1038,980,940,896,912,768,1120,3278,3056,

%U 2900,2776,2704,2592,2656,2240,3278,9612,9012,8576,8256,8000,7840,7552,7758

%N Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.

%C First column and main diagonal forms A092687. Row sums form A092688.

%C This triangle is the cascadence of binomial (1+2x). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. of the triangle, A(x,y), is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) satisfies: H(x) = G*H(x*G^d)/x and G=G(x) satisfies: G(x) = x*F(G(x)) so that G = series_reversion(x/F(x)); also, H(x) is the g.f. of column 0. - _Paul D. Hanna_, Jul 17 2006

%H Paul D. Hanna, <a href="/A092686/b092686.txt">Table of n, a(n) for n = 0..495</a>

%F T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k<n, with T(n, n)=T(n, 0), T(0, 0)=1, T(0, 1)=T(1, 0)=2.

%F G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - _Paul D. Hanna_, Jul 17 2006

%e Rows begin:

%e 1;

%e 2, 2;

%e 6, 4, 6;

%e 16, 14, 12, 16;

%e 46, 40, 40, 32, 46;

%e 132, 120, 112, 110, 92, 132;

%e 384, 352, 334, 312, 316, 264, 384;

%e 1120, 1038, 980, 940, 896, 912, 768, 1120;

%e 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278;

%e 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612;

%e 28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ...

%e Convolution of each row with {1,2} results in the triangle:

%e 1, 2;

%e 2, 6, 4;

%e 6, 16, 14, 12;

%e 16, 46, 40, 40, 32;

%e 46, 132, 120, 112, 110, 92;

%e 132, 384, 352, 334, 312, 316, 264;

%e 384, 1120, 1038, 980, 940, 896, 912, 768; ...

%e which, when flattened, equals the original triangle in flattened form.

%o (PARI) T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))

%o for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

%o (PARI) /* Generate Triangle by the G.F.: */

%o {T(n,k)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)}

%o for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ _Paul D. Hanna_, Jul 17 2006

%Y Cf. A092683, A092687, A092688, A092689, A120894, A120898.

%K nonn,tabl

%O 0,2

%A _Paul D. Hanna_, Mar 04 2004