login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120894
Cascadence of 1+x+x^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,1,1] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.
9
1, 1, 1, 1, 2, 3, 2, 1, 2, 5, 7, 6, 5, 3, 2, 5, 12, 18, 18, 14, 10, 10, 7, 5, 12, 30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30, 78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78, 206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206, 552, 946, 1109
OFFSET
0,5
COMMENTS
In this case, the g.f. of column 0, H(x), satisfies: H(x) = H(x*G^2)*G/x where G satisfies: G = x*(1+G+G^2), so that G/x = g.f. of Motzkin numbers (A001006). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. H(x) of column 0 satisfies: H(x) = H(x*G^d)*G/x where G = x*F(G); thus G = series_reversion(x/F(x)), or, equivalently, [x^n] G = [x^n] x*F(x)^n/n for n>=1.
Further, the g.f. of the cascadence triangle for polynomial F(x) of degree d is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) = G*H(x*G^d)/x and G = x*F(G). - Paul D. Hanna, Jul 17 2006
LINKS
FORMULA
G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*F(y) - y ), where H(x) = G*H(x*G^2)/x, G = x*F(G), F(x)=1+x+x^2. - Paul D. Hanna, Jul 17 2006
EXAMPLE
Triangle begins:
1;
1, 1, 1;
2, 3, 2, 1, 2;
5, 7, 6, 5, 3, 2, 5;
12, 18, 18, 14, 10, 10, 7, 5, 12;
30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30;
78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78;
206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206;
552, 946, 1109, 1075, 940, 790, 667, 583, 518, 460, 435, 389, 336, 392, 284, 206, 552;
1498, 2607, 3130, 3124, 2805, 2397, 2040, 1768, 1561, 1413, 1284, 1160, 1117, 1012, 882, 1042, 758, 552, 1498; ...
Convolution of [1,1,1] with each row produces:
[1,1,1]*[1] = [1,1,1];
[1,1,1]*[1,1,1] = [1,2,3,2,1];
[1,1,1]*[2,3,2,1,2] = [2,5,7,6,5,3,2];
[1,1,1]*[5,7,6,5,3,2,5] = [5,12,18,18,14,10,10,7,5];
[1,1,1]*[12,18,18,14,10,10,7,5,12] = [12,30,48,50,42,34,27,22,24,17,12]; ...
These convoluted rows, when concatenated, yield the sequence:
1,1,1, 1,2,3,2,1, 2,5,7,6,5,3,2, 5,12,18,18,14,10,10,7,5, ...
which equals the concatenated rows of this original triangle:
1, 1,1,1, 2,3,2,1,2, 5,7,6,5,3,2,5, 12,18,18,14,10,10,7,5,12, ...
PROG
(PARI) T(n, k)=if(2*n<k || k<0, 0, if(n<=1, 1, if(k==0, T(n-1, 0)+T(n-1, 1), if(k==2*n, T(n, 0), T(n-1, k-1)+T(n-1, k)+T(n-1, k+1)))))
for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))
(PARI) /* Generated by the G.F.: */
{T(n, k)=local(A, F=1+x+x^2, d=2, G=x, H=1+x, S=ceil(log(n+1)/log(d+1))); for(i=0, n, G=x*subst(F, x, G+x*O(x^n))); for(i=0, S, H=subst(H, x, x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H, x, x*y^d +x*O(x^n)))/(x*subst(F, x, y)-y); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
CROSSREFS
Cf. A120895 (column 0), A120896 (central terms), A120897 (row sums), A001006 (Motzkin numbers); variants: A092683, A092686, A120898.
Sequence in context: A301368 A198242 A049063 * A134819 A135267 A242406
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Jul 14 2006
STATUS
approved