login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049063
Triangle a(n,k) (0 <= k <= max(0, 2n-1)) of profile numbers.
1
1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 7, 8, 4, 1, 2, 4, 8, 15, 22, 20, 8, 1, 2, 4, 8, 16, 31, 52, 64, 48, 16, 1, 2, 4, 8, 16, 32, 63, 114, 168, 176, 112, 32, 1, 2, 4, 8, 16, 32, 64, 127, 240, 396, 512, 464, 256, 64, 1, 2, 4, 8, 16, 32, 64, 128, 255, 494, 876, 1304, 1488, 1184, 576
OFFSET
0,5
LINKS
A. L. Rosenberg, Profile numbers, Fibonacci Quart. 17 (1979), no. 3, 259-264.
FORMULA
a(n+1, k+1) = a(n, k)+2*a(n, k-1), k>0; a(n, 0)=1, a(1, 1)=1, a(n, 1)=2, a(n, n)=2^(n-1).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 3, 2;
1, 2, 4, 7, 8, 4;
1, 2, 4, 8, 15, 22, 20, 8; ...
MATHEMATICA
a[n_ /; n >= 1, 0] = 1; a[1, 1] = 1; a[n_ /; n > 1, 1] = 2; a[1, k_ /; k > 1] = 0; a[0, 0] = 1; a[n_, k_ /; k > 0] := a[n, k] = a[n-1, k-1] + 2 a[n-1, k-2]; a[_, _] = 0; Table[a[n, k], {n, 0, 8}, {k, 0, Max[0, 2n-1]}] // Flatten (* Jean-François Alcover, Oct 19 2016 *)
PROG
(Haskell)
a049063 n k = a049063_tabf !! n !! k
a133457_row n = a049063_tabf !! n
a049063_tabf = [1] : iterate f [1, 1] where
f row = 1 : 2 : zipWith (+) ( map (* 2) row) ((tail row) ++ [0])
-- Reinhard Zumkeller, Feb 12 2013
CROSSREFS
Sequence in context: A222173 A301368 A198242 * A120894 A134819 A135267
KEYWORD
nonn,easy,nice,tabf
EXTENSIONS
More terms from James A. Sellers
STATUS
approved