login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198242
G.f.: q-Cosh(x) evaluated at q=-x.
6
1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 2, 3, 2, 1, 2, 4, 5, 5, 5, 5, 4, 1, -3, -5, -4, -2, -1, -3, -9, -15, -16, -14, -15, -21, -29, -33, -26, -7, 12, 14, -3, -21, -22, -7, 9, 16, 17, 20, 31, 52, 75, 84, 76, 72, 92, 124, 131, 91, 27, -8, 18, 83, 132, 127, 81, 46, 55
OFFSET
0,12
COMMENTS
Note: q-Cosh(x) = Sum_{n>=0} x^(2*n) * q^(n*(2*n-1)) / Product_{k=1..2*n} (1-q^k)/(1-q).
LINKS
FORMULA
G.f.: Sum_{n>=0} x^(2*n) * (-x)^(n*(2*n-1)) / Product_{k=1..2*n} (1-(-x)^k)/(1+x).
EXAMPLE
G.f.: 1 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 + 2*x^11 + 3*x^12 +...
PROG
(PARI) {a(n)=local(Cosh_q=sum(k=0, sqrtint(n+4), (-x)^(k*(2*k-1))*x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x)+x*O(x^n))))); polcoeff(Cosh_q, n)}
for(n=0, 81, print1(a(n), ", "))
CROSSREFS
Cf. A152398 (e_q), A198197 (E_q), A198243 (q-Sinh), A198201 (q-cosh), A198202 (q-sinh).
Sequence in context: A285581 A222173 A301368 * A049063 A120894 A134819
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 07 2012
STATUS
approved