login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198201
G.f.: q-cosh(x) evaluated at q=-x.
5
1, 0, 1, 1, 2, 4, 6, 9, 14, 18, 18, 16, 67, 67, 66, 72, 84, 99, 117, 138, 159, 468, 516, 578, 679, 810, 933, 1018, 1072, 1138, 1262, 1448, 4745, 5196, 5851, 6630, 7382, 8031, 8649, 9405, 10409, 11569, 12649, 13530, 14378, 51022, 55567, 60439, 65906, 71953, 78283
OFFSET
0,5
COMMENTS
Note: q-cosh(x) = Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (1-q^k)/(1-q).
FORMULA
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..2*n} (1-(-x)^k)/(1+x).
EXAMPLE
G.f.: 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 9*x^7 + 14*x^8 + 18*x^9 +...
PROG
(PARI) {a(n)=local(Cosh_q=sum(k=0, sqrtint(n+4), x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x)+x*O(x^n))))); polcoeff(Cosh_q, n)}
for(n=0, 81, print1(a(n), ", "))
CROSSREFS
Cf. A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198243 (q-Sinh), A198202 (q-sinh).
Sequence in context: A205883 A253108 A375109 * A281989 A328423 A070211
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 07 2012
STATUS
approved