login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198243
G.f.: q-Sinh(x) evaluated at q=-x.
5
1, 0, 0, 0, 0, -1, -2, -2, -1, 0, 0, -1, -2, -2, 0, 4, 7, 6, 3, 2, 3, 4, 5, 6, 6, 6, 8, 10, 6, -6, -18, -20, -13, -7, -8, -13, -16, -15, -13, -15, -25, -41, -53, -53, -44, -32, -16, 5, 22, 25, 18, 13, 14, 19, 29, 41, 44, 38, 43, 72, 109, 130, 135, 146, 180, 232, 274
OFFSET
1,7
COMMENTS
Note: q-Sinh(x) = Sum_{n>=0} x^(2*n+1) * q^(n*(2*n+1)) / Product_{k=1..2*n+1} (1-q^k)/(1-q).
FORMULA
G.f.: Sum_{n>=0} x^(2*n+1) * (-x)^(n*(2*n+1)) / Product_{k=1..2*n+1} (1-(-x)^k)/(1+x).
EXAMPLE
G.f.: x - x^6 - 2*x^7 - 2*x^8 - x^9 - x^12 - 2*x^13 - 2*x^14 + 4*x^16 + 7*x^17 +...
PROG
(PARI) {a(n)=local(Sinh_q=sum(k=0, sqrtint(n+4), (-x)^(k*(2*k+1))*x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(Sinh_q, n)}
for(n=0, 81, print1(a(n), ", "))
CROSSREFS
Cf. A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198201 (q-cosh), A198202 (q-sinh).
Sequence in context: A347883 A024712 A281497 * A164965 A021823 A131026
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 07 2012
STATUS
approved