login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021823
Decimal expansion of 1/819.
14
0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1
OFFSET
0,4
COMMENTS
Partial sums of A010892. - Paul Barry, Jun 06 2003
Expansion in any base b >= 3 of 1/((b-1)*(b^2-b+1)) = 1/(b^3-2b^2+2b-1). E.g., 1/14 in base 3, 1/39 in base 4, 1/84 in base 5, etc. - Franklin T. Adams-Watters, Nov 07 2006
a(n) is the second least significant digit in the ternary representation of 2^n (cf. A004642). - Alexandre Herrera, Oct 09 2023
FORMULA
a(n) = a(n-1)-a(n-2)+1 = 2-a(n-3) = a(n-6). - Henry Bottomley, Apr 12 2000
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k+1)*binomial(n-k, k) = 1-((-1)^floor(n/3)+(-1)^(floor((n+1)/3)))/2. - Vladeta Jovovic, Feb 10 2003
G.f.: x^2/(1-2x+2x^2-x^3)=x^2/((1-x)(x^2-x+1)). - Paul Barry, Jun 06 2003
a(n+2) = sum{k=0..n, binomial(n-2k, n-k)}. - Paul Barry, Jan 15 2005
a(0)=0, a(1)=0, a(2)=1, a(n)=2*a(n-1)-2*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2012
EXAMPLE
0.0012210012210012210...
MATHEMATICA
Join[{0, 0}, RealDigits[1/819, 10, 120][[1]]] (* or *) PadRight[{}, 120, {0, 0, 1, 2, 2, 1}] (* or *) LinearRecurrence[{2, -2, 1}, {0, 0, 1}, 120] (* Harvey P. Dale, Aug 19 2012 *)
PROG
(PARI) a(n)=1/819. \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A004642, A153130 (2^n mod 9).
Sequence in context: A281497 A198243 A164965 * A131026 A333839 A014604
KEYWORD
nonn,cons,easy
STATUS
approved