login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281497
Write n in binary reflected Gray code and sum the positions where there is a '1' followed immediately to the left by a '0', counting the rightmost digit as position 1.
2
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 2, 1, 0, 0, 1, 2, 2, 0, 0, 1, 0, 3, 4, 3, 3, 2, 2, 1, 0, 0, 1, 2, 2, 3, 3, 4, 3, 0, 1, 0, 0, 2, 2, 1, 0, 4, 5, 6, 6, 4, 4, 5, 4, 3, 4, 3, 3, 2, 2, 1, 0, 0, 1, 2, 2, 3, 3, 4, 3, 4, 5, 4, 4, 6, 6, 5, 4, 0, 1, 2, 2, 0, 0, 1, 0, 3, 4, 3, 3, 2, 2, 1, 0, 5, 6, 7, 7, 8, 8, 9, 8, 5, 6, 5, 5, 7, 7, 6
OFFSET
1,12
LINKS
FORMULA
a(n) = A049502(A003188(n)).
EXAMPLE
For n = 12, the binary reflected Gray code for 12 is '1010'. In '1010', the position of '1' followed immediately to the left by a '0' counting from right is 2. So, a(12) = 2.
MATHEMATICA
Table[If[Length@ # == 0, 0, Total[#[[All, 1]]]] &@ SequencePosition[ Reverse@ IntegerDigits[#, 2] &@ BitXor[n, Floor[n/2]], {1, 0}], {n, 120}] (* Michael De Vlieger, Jan 23 2017, Version 10.1, after Robert G. Wilson v at A003188 *)
PROG
(Python)
def G(n):
....return bin(n^(n/2))[2:]
def a(n):
....x=G(n)[::-1]
....s=0
....for i in range(1, len(x)):
........if x[i-1]=="1" and x[i]=="0":
............s+=i
....return s
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Indranil Ghosh, Jan 23 2017
STATUS
approved