login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049502
Major index of n, 2nd definition.
10
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 4, 5, 6, 6, 4, 5, 4, 4, 0, 1, 2, 2, 3, 4, 3, 3, 0, 1, 2, 2, 0, 1, 0, 0, 0, 1, 2, 2, 3, 4, 3, 3, 4, 5, 6, 6, 4, 5, 4, 4, 5, 6, 7, 7, 8, 9, 8, 8, 5, 6, 7, 7, 5, 6, 5, 5, 0, 1, 2, 2, 3, 4, 3, 3, 4
OFFSET
0,11
COMMENTS
a(A023758(n)) = 0; a(A101082(n)) > 0. - Reinhard Zumkeller, Jun 17 2015
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; cf. p. 89.
LINKS
FORMULA
Write n in binary; add positions where there are 1's followed by 0's, counting from right.
EXAMPLE
83 = 1010011 has 1's followed by 0's in positions 2 and 5 (reading from the right), so a(83)=7.
MAPLE
A049502 := proc(n)
local a, ndgs, p ;
a := 0 ;
ndgs := convert(n, base, 2) ;
for p from 1 to nops(ndgs)-1 do
if op(p, ndgs)- op(p+1, ndgs) = 1 then
a := a+p ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 17 2012
MATHEMATICA
Table[Total[Flatten[Position[Partition[Reverse[IntegerDigits[n, 2]], 2, 1], _?(#=={1, 0}&)]]], {n, 0, 110}] (* Harvey P. Dale, Oct 05 2013 *)
Table[Total[SequencePosition[Reverse[IntegerDigits[n, 2]], {1, 0}][[All, 1]]], {n, 0, 120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 26 2020 *)
PROG
(Haskell)
a049502 = f 0 1 where
f m i x = if x <= 4
then m else f (if mod x 4 == 1
then m + i else m) (i + 1) $ div x 2
-- Reinhard Zumkeller, Jun 17 2015
(Python)
def m(n):
x=bin(int(n))[2:][::-1]
s=0
for i in range(1, len(x)):
if x[i-1]=="1" and x[i]=="0":
s+=i
return s
for i in range(101):
print(str(i)+" "+str(m(i))) # Indranil Ghosh, Dec 22 2016
(PARI) a(n)=if(n<5, return(0)); sum(i=0, exponent(n)-1, (bittest(n, i) && !bittest(n, i+1))*(i+1)) \\ Charles R Greathouse IV, Jan 30 2023
CROSSREFS
KEYWORD
nonn,base,nice,easy
EXTENSIONS
More terms from Erich Friedman, Feb 19 2000
STATUS
approved