login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A198241
Decimal expansion of greatest x having 3*x^2+4x=3*cos(x).
3
4, 8, 6, 0, 0, 4, 4, 3, 5, 9, 9, 2, 2, 9, 3, 0, 4, 0, 8, 1, 6, 1, 9, 8, 9, 8, 1, 5, 0, 3, 5, 7, 8, 5, 6, 4, 6, 9, 2, 1, 1, 0, 8, 7, 9, 7, 3, 0, 9, 4, 7, 7, 4, 2, 5, 5, 3, 7, 9, 8, 3, 9, 2, 2, 9, 1, 8, 0, 2, 6, 8, 1, 9, 8, 3, 7, 6, 9, 9, 0, 9, 0, 6, 2, 7, 7, 5, 3, 7, 1, 6, 2, 9, 0, 0, 4, 5, 7, 7
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.4308334207177285425665439336391388599...
greatest x: 0.48600443599229304081619898150357856...
MATHEMATICA
a = 3; b = 4; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
RealDigits[r1](* A198240 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .48, .49}, WorkingPrecision -> 110]
RealDigits[r2] (* A198241 *)
CROSSREFS
Cf. A197737.
Sequence in context: A363873 A372355 A005133 * A175475 A193082 A348563
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved