The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175475 Decimal expansion of the Dickman function evaluated at 1/3. 5
 0, 4, 8, 6, 0, 8, 3, 8, 8, 2, 9, 1, 1, 3, 1, 5, 6, 6, 9, 0, 7, 1, 8, 3, 0, 3, 9, 3, 4, 3, 4, 0, 7, 4, 2, 1, 3, 5, 4, 3, 2, 9, 5, 8, 0, 4, 7, 8, 1, 4, 0, 5, 4, 2, 3, 1, 6, 8, 0, 5, 2, 8, 5, 0, 5, 1, 4, 8, 8, 2, 3, 5, 7, 3, 5, 9, 3, 2, 4, 7, 2, 0, 0, 4, 0, 9, 1, 2, 9, 3, 3, 7, 1, 1, 6, 7, 7, 0, 7, 9, 6, 8, 0, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Density of the cube root-smooth numbers, see A090081. - Charles R Greathouse IV, Jul 14 2014 LINKS Table of n, a(n) for n=0..104. David Broadhurst, Dickman polylogarithms and their constants arXiv:1004.0519 [math-ph], 2010. K. Soundararajan, An asymptotic expansion related to the Dickman function, arXiv:1005.3494 [math.NT], 2010. FORMULA Equals 1 - log(3) + log^2(3)/2 - Pi^2/12 + Sum_{n>=1} 1/(n^2*3^n), where Sum_{n>=1} 1/(n^2*3^n) = 0.3662132299770634876167462976642627638... EXAMPLE F(1/3) = 0.04860838829113156690718... MATHEMATICA N[1 - Log[3] + Log[3]^2/2 - Pi^2/12 + PolyLog[2, 1/3], 105] // RealDigits // First // Prepend[#, 0]& (* Jean-François Alcover, Feb 05 2013 *) PROG (PARI) 1-log(3)+log(3)^2/2-Pi^2/12+polylog(2, 1/3) \\ Charles R Greathouse IV, Jul 14 2014 CROSSREFS Cf. A002391, A072691, A175478. Sequence in context: A372355 A005133 A198241 * A193082 A348563 A201335 Adjacent sequences: A175472 A175473 A175474 * A175476 A175477 A175478 KEYWORD cons,nonn AUTHOR R. J. Mathar, May 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 22:16 EDT 2024. Contains 372741 sequences. (Running on oeis4.)