login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175475 Decimal expansion of the Dickman function evaluated at 1/3. 4
0, 4, 8, 6, 0, 8, 3, 8, 8, 2, 9, 1, 1, 3, 1, 5, 6, 6, 9, 0, 7, 1, 8, 3, 0, 3, 9, 3, 4, 3, 4, 0, 7, 4, 2, 1, 3, 5, 4, 3, 2, 9, 5, 8, 0, 4, 7, 8, 1, 4, 0, 5, 4, 2, 3, 1, 6, 8, 0, 5, 2, 8, 5, 0, 5, 1, 4, 8, 8, 2, 3, 5, 7, 3, 5, 9, 3, 2, 4, 7, 2, 0, 0, 4, 0, 9, 1, 2, 9, 3, 3, 7, 1, 1, 6, 7, 7, 0, 7, 9, 6, 8, 0, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Density of the cube root-smooth numbers, see A090081. - Charles R Greathouse IV, Jul 14 2014

LINKS

Table of n, a(n) for n=0..104.

David Broadhurst, Dickman polylogarithms and their constants arXiv:1004.0519 [math-ph], 2010.

K. Soundararajan, An asymptotic expansion related to the Dickman function, arXiv:1005.3494 [math.NT], 2010.

FORMULA

Equals 1-log(3)+log^2(3)/2-Pi^2/12+sum_{n>=1} 1/(n^2*3^n), where Sum_{n>=1} 1/(n^2*3^n) = 0.3662132299770634876167462976642627638...

EXAMPLE

F(1/3) = 0.04860838829113156690718...

MATHEMATICA

N[1 - Log[3] + Log[3]^2/2 - Pi^2/12 + PolyLog[2, 1/3], 105] // RealDigits // First // Prepend[#, 0]& (* Jean-Fran├žois Alcover, Feb 05 2013 *)

PROG

(PARI) 1-log(3)+log(3)^2/2-Pi^2/12+polylog(2, 1/3) \\ Charles R Greathouse IV, Jul 14 2014

CROSSREFS

Cf. A002391, A072691, A175478.

Sequence in context: A011366 A005133 A198241 * A193082 A201335 A219246

Adjacent sequences:  A175472 A175473 A175474 * A175476 A175477 A175478

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, May 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 19:48 EDT 2020. Contains 335729 sequences. (Running on oeis4.)