login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120892
a(n)=3*a(n-1)+3*a(n-2)-a(n-3);a(0)=1,a(1)=0,a(2)=3. a(n)=4*{a(n-1)+(-1)^n}-a(n-2);a(0)=1,a(1)=0.
6
1, 0, 3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201
OFFSET
0,3
COMMENTS
For n>1, short leg of primitive Pythagorean triangles having an angle nearing pi/3 with larger values of sides.[Complete triple (X,Y,Z),X<Y<Z is given by X=a(n),Y=A001353(n),Z=A120893(n), with recurrence relations Y(i+1)=2*{Y(i)-(-1)^i} + 3*a(i) ; Z(i+1)=2*{2*Z(i)-a(i-1)} - 3*(-1)^i] A120893(n)=2*a(n)-(-1)^n.
FORMULA
Union of A045899 and A011922.
O.g.f.: -(-1+3*x)/((x+1)*(x^2-4*x+1)). - R. J. Mathar, Nov 23 2007
MATHEMATICA
LinearRecurrence[{3, 3, -1}, {1, 0, 3}, 30] (* Harvey P. Dale, Mar 05 2014 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 3, 3]^n*[1; 0; 3])[1, 1] \\ Charles R Greathouse IV, Oct 19 2022
CROSSREFS
Sequence in context: A372642 A148916 A148917 * A195499 A225688 A109655
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Jul 13 2006
EXTENSIONS
Corrected and extended by T. D. Noe, Nov 07 2006
STATUS
approved