login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109655
Number of partitions of n^2 into up to n parts each no more than 2n, or of n(3n+1)/2 into exactly n distinct parts each no more than 3n.
5
1, 1, 3, 8, 33, 141, 676, 3370, 17575, 94257, 517971, 2900900, 16509188, 95220378, 555546058, 3273480400, 19456066175, 116521302221, 702567455381, 4261765991164, 25992285913221, 159303547578873, 980701254662294, 6061894625462492, 37609015174472628
OFFSET
0,3
LINKS
FORMULA
a(n) = A067059(n,2n) = A067059(2n,n).
Slightly less than but close to (27/4)^n*sqrt(3)/(2*Pi*n^2).
EXAMPLE
a(3) = 8 since 3^2=9 can be partitioned into 3+3+3, 4+3+2, 4+4+1, 5+4, 5+3+1, 5+2+2, 6+3, or 6+2+1, while 3*(3*3+1)/2=15 can be partitioned into 6+5+4, 7+5+3, 7+6+2, 8+6+1, 8+5+2, 8+4+3, 9+5+1, or 9+4+2.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n*(3*n+1)/2, 3*n, n):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 18 2012
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[i<t || n<t*(t+1)/2 || n>t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]]]; a[n_] := b[n*(3*n+1)/2, 3*n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 05 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A161407. - Reinhard Zumkeller, Jun 10 2009
Row n=3 of A204459. - Alois P. Heinz, Jan 18 2012
Sequence in context: A120892 A195499 A225688 * A184255 A001120 A302629
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 05 2005
EXTENSIONS
More terms from Alois P. Heinz, Jan 18 2012
STATUS
approved