OFFSET
1,1
COMMENTS
See A195500 for a discussion and references.
Apparently a(n) = A120892(n+1) for 1 <= n <= 24. - Georg Fischer, Oct 24 2018
FORMULA
Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - Colin Barker, Jan 04 2012
EXAMPLE
From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):
4/3, 15/8, 56/33, 209/120, 780/451.
MATHEMATICA
r = Sqrt[3]; z = 25;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
Sqrt[a^2 + b^2] (* A195531 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Clark Kimberling, Sep 20 2011
STATUS
approved