login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195499
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
5
3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201, 33154114877520
OFFSET
1,1
COMMENTS
See A195500 for a discussion and references.
Apparently a(n) = A120892(n+1) for 1 <= n <= 24. - Georg Fischer, Oct 24 2018
FORMULA
Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - Colin Barker, Jan 04 2012
EXAMPLE
From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):
4/3, 15/8, 56/33, 209/120, 780/451.
MATHEMATICA
r = Sqrt[3]; z = 25;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195499, A195503 *)
Sqrt[a^2 + b^2] (* A195531 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Clark Kimberling, Sep 20 2011
STATUS
approved