login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
5

%I #27 Oct 24 2018 04:58:25

%S 3,8,33,120,451,1680,6273,23408,87363,326040,1216801,4541160,16947843,

%T 63250208,236052993,880961760,3287794051,12270214440,45793063713,

%U 170902040408,637815097923,2380358351280,8883618307201,33154114877520

%N Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).

%C See A195500 for a discussion and references.

%C Apparently a(n) = A120892(n+1) for 1 <= n <= 24. - _Georg Fischer_, Oct 24 2018

%F Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - _Colin Barker_, Jan 04 2012

%e From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):

%e 4/3, 15/8, 56/33, 209/120, 780/451.

%t r = Sqrt[3]; z = 25;

%t p[{f_, n_}] := (#1[[2]]/#1[[

%t 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[

%t 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[

%t Array[FromContinuedFraction[

%t ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];

%t {a, b} = ({Denominator[#1], Numerator[#1]} &)[

%t p[{r, z}]] (* A195499, A195503 *)

%t Sqrt[a^2 + b^2] (* A195531 *)

%t (* by _Peter J. C. Moses_, Sep 02 2011 *)

%Y Cf. A120892, A195500, A195503, A195531.

%K nonn,easy,frac

%O 1,1

%A _Clark Kimberling_, Sep 20 2011