login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195496
Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
5
1, 0, 1, 7, 1, 5, 3, 4, 4, 6, 7, 5, 4, 8, 0, 4, 4, 6, 6, 2, 5, 6, 7, 9, 8, 1, 8, 7, 8, 1, 6, 6, 0, 6, 3, 3, 6, 9, 7, 4, 3, 6, 7, 9, 8, 2, 5, 5, 3, 7, 4, 6, 3, 9, 5, 6, 4, 0, 3, 4, 9, 5, 5, 6, 1, 7, 5, 7, 7, 6, 1, 4, 7, 5, 2, 9, 8, 5, 3, 2, 8, 9, 2, 4, 2, 4, 6, 6, 6, 3, 7, 8, 4, 1, 8, 4, 8, 3, 0, 3
OFFSET
1,4
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(B)=1.017153446754804466256798187816606336...
MATHEMATICA
a = b - 1; b = GoldenRatio; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195495 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195496 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195497 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195498 *)
CROSSREFS
Cf. A195304.
Sequence in context: A181722 A317833 A021587 * A065479 A263202 A011478
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved