login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195494
Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the right triangle ABC having sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
5
6, 3, 1, 7, 0, 4, 6, 2, 0, 4, 1, 6, 6, 7, 9, 6, 8, 2, 9, 8, 0, 6, 1, 4, 4, 4, 6, 4, 1, 6, 4, 7, 6, 0, 8, 3, 3, 4, 2, 8, 5, 0, 2, 9, 6, 8, 3, 1, 0, 3, 5, 0, 6, 6, 4, 3, 3, 8, 3, 1, 3, 0, 2, 6, 2, 7, 8, 1, 5, 8, 1, 7, 4, 0, 4, 4, 1, 6, 7, 8, 8, 4, 7, 9, 7, 0, 1, 9, 2, 0, 0, 2, 5, 2, 0, 4, 3, 0, 7, 1
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
Philo(ABC,G)=0.631704620416679682980614446416476083...
MATHEMATICA
a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195491 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195492 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A195493 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195494 *)
CROSSREFS
Cf. A195304.
Sequence in context: A066717 A176395 A309646 * A154969 A192741 A240264
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved