login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195491
Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
5
6, 2, 9, 5, 8, 1, 0, 6, 1, 3, 8, 7, 7, 1, 6, 0, 4, 4, 0, 4, 5, 4, 9, 5, 8, 7, 5, 6, 8, 8, 5, 4, 0, 6, 9, 2, 2, 3, 1, 6, 8, 4, 9, 0, 8, 3, 8, 6, 6, 0, 7, 0, 2, 9, 6, 5, 1, 1, 2, 3, 1, 3, 4, 9, 6, 2, 5, 2, 6, 6, 6, 5, 0, 5, 1, 3, 5, 9, 2, 3, 4, 6, 8, 8, 9, 9, 4, 9, 2, 9, 6, 9, 8, 9, 0, 2, 8, 7, 6, 7
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(A)=0.62958106138771604404549587568854069...
MATHEMATICA
a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195491 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195492 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A195493 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195494 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved