login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195489
Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).
5
1, 8, 1, 7, 3, 6, 3, 6, 0, 0, 5, 7, 5, 5, 1, 7, 6, 2, 3, 7, 6, 2, 6, 3, 8, 9, 1, 1, 6, 4, 7, 5, 9, 5, 6, 6, 8, 5, 4, 1, 3, 7, 5, 2, 6, 2, 5, 3, 1, 7, 7, 8, 7, 3, 9, 7, 1, 8, 3, 3, 8, 4, 8, 0, 5, 1, 0, 8, 2, 7, 7, 5, 8, 9, 2, 3, 7, 3, 9, 2, 9, 8, 2, 4, 3, 6, 3, 5, 9, 0, 1, 2, 3, 5, 2, 5, 2, 6, 7, 3
OFFSET
1,2
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(C)=1.817363600575517623762638911647...
MATHEMATICA
a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195487 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195488 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195489 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195490 *)
CROSSREFS
Cf. A195304.
Sequence in context: A377513 A010157 A244089 * A245280 A200585 A301908
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved