|
|
A245280
|
|
Decimal expansion of a2, the second of two constants associated with Djokovic's conjecture on an integral inequality.
|
|
1
|
|
|
8, 1, 7, 5, 1, 2, 1, 1, 2, 4, 7, 8, 0, 2, 0, 6, 6, 0, 1, 5, 8, 3, 2, 0, 6, 0, 8, 5, 1, 2, 1, 7, 9, 3, 3, 5, 1, 2, 4, 6, 9, 6, 0, 6, 1, 6, 7, 4, 9, 4, 5, 9, 6, 7, 8, 8, 0, 1, 3, 3, 5, 0, 0, 5, 4, 3, 4, 8, 1, 1, 6, 0, 2, 2, 8, 3, 9, 9, 0, 7, 8, 8, 2, 1, 5, 1, 0, 0, 2, 1, 9, 5, 6, 2, 7, 3, 9, 0, 3, 0, 2, 5, 9, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.1.1 Djokovic's Conjecture, p. 210.
|
|
LINKS
|
|
|
FORMULA
|
Positive root of 12*x^3 - 20*x^2 + 12*x - 3.
Equals (r - 8/r + 10)/18, where r = (27*sqrt(17)+109)^(1/3).
|
|
EXAMPLE
|
0.81751211247802066015832060851217933512469606167494596788013350054348116...
|
|
MATHEMATICA
|
a2 = 1 - Root[12*x^3 - 16*x^2 + 8*x - 1, x, 1]; RealDigits[a2, 10, 103] // First
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|