The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245280 Decimal expansion of a2, the second of two constants associated with Djokovic's conjecture on an integral inequality. 1
 8, 1, 7, 5, 1, 2, 1, 1, 2, 4, 7, 8, 0, 2, 0, 6, 6, 0, 1, 5, 8, 3, 2, 0, 6, 0, 8, 5, 1, 2, 1, 7, 9, 3, 3, 5, 1, 2, 4, 6, 9, 6, 0, 6, 1, 6, 7, 4, 9, 4, 5, 9, 6, 7, 8, 8, 0, 1, 3, 3, 5, 0, 0, 5, 4, 3, 4, 8, 1, 1, 6, 0, 2, 2, 8, 3, 9, 9, 0, 7, 8, 8, 2, 1, 5, 1, 0, 0, 2, 1, 9, 5, 6, 2, 7, 3, 9, 0, 3, 0, 2, 5, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.1.1 Djokovic's Conjecture, p. 210. LINKS Table of n, a(n) for n=0..103. FORMULA 1 - A245279. Positive root of 12*x^3 - 20*x^2 + 12*x - 3. Equals (r - 8/r + 10)/18, where r = (27*sqrt(17)+109)^(1/3). EXAMPLE 0.81751211247802066015832060851217933512469606167494596788013350054348116... MATHEMATICA a2 = 1 - Root[12*x^3 - 16*x^2 + 8*x - 1, x, 1]; RealDigits[a2, 10, 103] // First CROSSREFS Cf. A245279. Sequence in context: A010157 A244089 A195489 * A200585 A301908 A200277 Adjacent sequences: A245277 A245278 A245279 * A245281 A245282 A245283 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jul 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 07:00 EDT 2024. Contains 375865 sequences. (Running on oeis4.)