login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245279 Decimal expansion of a1, the first of two constants associated with Djokovic's conjecture on an integral inequality. 1
1, 8, 2, 4, 8, 7, 8, 8, 7, 5, 2, 1, 9, 7, 9, 3, 3, 9, 8, 4, 1, 6, 7, 9, 3, 9, 1, 4, 8, 7, 8, 2, 0, 6, 6, 4, 8, 7, 5, 3, 0, 3, 9, 3, 8, 3, 2, 5, 0, 5, 4, 0, 3, 2, 1, 1, 9, 8, 6, 6, 4, 9, 9, 4, 5, 6, 5, 1, 8, 8, 3, 9, 7, 7, 1, 6, 0, 0, 9, 2, 1, 1, 7, 8, 4, 8, 9, 9, 7, 8, 0, 4, 3, 7, 2, 6, 0, 9, 6, 9, 7, 4, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.1.1 Djokovic's Conjecture, p. 210.

LINKS

Table of n, a(n) for n=0..102.

FORMULA

Positive root of 12*x^3 - 16*x^2 + 8*x - 1.

Equals (r - 8/r + 8)/18, where r = (27*sqrt(17)-109)^(1/3).

EXAMPLE

0.1824878875219793398416793914878206648753039383250540321198664994565...

MATHEMATICA

a1 = Root[12*x^3 - 16*x^2 + 8*x - 1, x, 1]; RealDigits[a1, 10, 103] // First

CROSSREFS

Cf. A245280.

Sequence in context: A073440 A245533 A021552 * A321071 A008830 A248302

Adjacent sequences:  A245276 A245277 A245278 * A245280 A245281 A245282

KEYWORD

nonn,cons,easy

AUTHOR

Jean-François Alcover, Jul 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 00:50 EST 2022. Contains 350410 sequences. (Running on oeis4.)