The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245281 a(1)=2; for n > 1, a(n) is the least positive integer not occurring earlier that shares a digit and a factor with a(n-1). 1
 2, 12, 10, 14, 4, 24, 20, 22, 26, 6, 16, 18, 8, 28, 21, 15, 5, 25, 35, 30, 3, 33, 36, 32, 34, 38, 48, 40, 42, 27, 57, 45, 50, 52, 54, 44, 46, 56, 58, 68, 60, 62, 64, 66, 63, 39, 9, 69, 90, 70, 7, 77, 147, 49, 84, 74, 37, 333, 93, 31, 124, 72, 75, 51, 17, 102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Is this a permutation of the integers >= 2? # Robert Israel, Sep 07 2014 LINKS Michel Lagneau, Table of n, a(n) for n = 1..3500 EXAMPLE a(16)=15 because GCD(a(16),a(15)) = GCD(15,21) = 3 and 1 is the common digit of 15 and 16. MAPLE S:= {2}: A[1]:= 2: L[1]:= {2}: for n from 2 to 1000 do   k:= 0;   mS:= max(S);   Sp:= {\$2..mS} minus S;   do      if Sp <> {} then         k:= min(Sp);         Sp:= Sp minus {k};      elif k < mS then k:= mS+1      else k:= k+1      fi;      if member(k, S) or igcd(k, A[n-1]) = 1 then next fi;      Lk:= convert(convert(k, base, 10), set);      if Lk intersect L[n-1] <> {} then         A[n]:= k;         L[n]:= Lk;         S:= S union {k};         break      fi   od: od: seq(A[n], n=1..1000); # Robert Israel, Sep 07 2014 MATHEMATICA f[s_List]:=Block[{m=s[[-1]], k=2}, While[MemberQ[s, k]||Intersection[IntegerDigits[k], IntegerDigits[m]]=={}||GCD[m, k]==1, k++]; Append[s, k]]; Nest[f, {2}, 71] CROSSREFS Cf. A064413, A184992. Sequence in context: A216349 A280015 A343645 * A308215 A216478 A181060 Adjacent sequences:  A245278 A245279 A245280 * A245282 A245283 A245284 KEYWORD nonn,base AUTHOR Michel Lagneau, Sep 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 00:12 EST 2021. Contains 349395 sequences. (Running on oeis4.)