login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216349
Triangle T(n,k) in which n-th row lists the values of the n-th derivative at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways; n>=1, 1<=k<=A000081(n).
8
1, 2, 12, 9, 156, 100, 80, 56, 3160, 1880, 1180, 1420, 950, 1360, 890, 660, 480, 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, 14988, 10848, 34974, 21474, 13314, 15114, 10974, 13014, 8874, 6534, 5094, 3218628, 1806476, 1021552, 588756, 1189132
OFFSET
1,2
COMMENTS
The ordering of the functions is the same as in A215703 and is defined by the algorithm below.
LINKS
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56.
Triangle T(n,k) begins:
: 1;
: 2;
: 12, 9;
: 156, 100, 80, 56;
: 3160, 1880, 1180, 1420, 950, 1360, 890, 660, 480;
: 87990, 50496, 29682, 35382, 24042, 22008, 14928, 31968, 20268, ...
MAPLE
with(combinat):
F:= proc(n) F(n):= `if`(n<2, [x$n], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, [x^n],
`if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
end:
T:= n-> map(f-> n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), F(n))[]:
seq(T(n), n=1..7);
CROSSREFS
First column gives: A216351.
Last elements of rows give: A033917.
A version with sorted row elements is: A216350.
Rows sums give: A216281.
Sequence in context: A100654 A166544 A081468 * A280015 A343645 A245281
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Sep 04 2012
STATUS
approved