login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081468
a(n) is the smallest multiple of n of the type k*n + k*(k+1)/2, i.e., the smallest sum (n+1) to (n+k) which is divisible by n.
6
2, 12, 9, 56, 30, 24, 63, 240, 108, 50, 165, 132, 234, 126, 90, 992, 408, 180, 513, 420, 147, 308, 759, 480, 900, 390, 1053, 224, 1218, 570, 1395, 4032, 429, 680, 595, 324, 1998, 912, 546, 720, 2460, 1050, 2709, 1936, 450, 1334, 3243, 2064, 3528, 1500, 1020
OFFSET
1,1
COMMENTS
From Robert Israel, Jun 26 2018: (Start)
a(n) = 3*n*(n-1)/2 if n is an odd prime power.
a(2^k) = 4^(k+1) - 2^(k+1). (End)
LINKS
EXAMPLE
a(4) = 5 + 6 + 7 + 8 + 9 + 10 + 11 = 56; A081467(4) = 11.
MAPLE
f:= proc(n) local k;
k:= min(map(t ->rhs(op(t)), {msolve(k*(k+1), 2*n)}) minus {0});
k*n+k*(k+1)/2
end proc:
f(1):= 2:
map(f, [$1..100]); # Robert Israel, Jun 26 2018
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[Divisible[m = k n + k(k+1)/2, n], Return[m] ] ]; Array[a, 100] (* Jean-François Alcover, Mar 25 2019 *)
PROG
(PARI) a(n) = {my(k = 1); while((s=k*n + k*(k+1)/2) % n, k++); s; } \\ Michel Marcus, Jul 29 2017
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Amarnath Murthy, Mar 23 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
STATUS
approved