login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216281
Sum of n-th derivatives at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways.
3
1, 2, 21, 392, 11980, 471966, 24655820, 1548264752, 118039822488, 10482116888640, 1076582148812808, 125439212178037728, 16473767684928836256, 2410412979008498588208, 390793360308270931979400, 69716064087131957637475968
OFFSET
1,2
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => a(n) = 156+100+80+56 = 392.
MAPLE
F:= proc(n) F(n):= `if`(n=1, [x], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(seq(
mul(F(i)[w[t]-t+1], t=1..j)*v, w=combinat[choose](
[$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
end:
a:= n-> add(n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), f=F(n)):
seq(a(n), n=1..12);
MATHEMATICA
F[n_] := If[n == 1, {x}, x^#& /@ g[n - 1, n - 1]];
g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@Table[Table[Table[ Product[F[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {w, Subsets[Range[Length[ F[i]] + j - 1], {j}]}], {v, g[n - i*j, i - 1]}], {j, 0, n/i}]];
a[n_] := a[n] = Sum[n!*SeriesCoefficient[f /. x -> x + 1, {x, 0, n}], {f, F[n]}];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)
CROSSREFS
Row sums of A216349, A216350.
Sequence in context: A099710 A098344 A228384 * A263625 A245686 A091315
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 04 2012
EXTENSIONS
a(16) from Alois P. Heinz, May 09 2016
STATUS
approved