login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of n-th derivatives at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways.
3

%I #27 Nov 14 2023 12:13:33

%S 1,2,21,392,11980,471966,24655820,1548264752,118039822488,

%T 10482116888640,1076582148812808,125439212178037728,

%U 16473767684928836256,2410412979008498588208,390793360308270931979400,69716064087131957637475968

%N Sum of n-th derivatives at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways.

%e For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => a(n) = 156+100+80+56 = 392.

%p F:= proc(n) F(n):= `if`(n=1, [x], map(h->x^h, g(n-1, n-1))) end:

%p g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(seq(

%p mul(F(i)[w[t]-t+1], t=1..j)*v, w=combinat[choose](

%p [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])

%p end:

%p a:= n-> add(n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), f=F(n)):

%p seq(a(n), n=1..12);

%t F[n_] := If[n == 1, {x}, x^#& /@ g[n - 1, n - 1]];

%t g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@Table[Table[Table[ Product[F[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {w, Subsets[Range[Length[ F[i]] + j - 1], {j}]}], {v, g[n - i*j, i - 1]}], {j, 0, n/i}]];

%t a[n_] := a[n] = Sum[n!*SeriesCoefficient[f /. x -> x + 1, {x, 0, n}], {f, F[n]}];

%t Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* _Jean-François Alcover_, Nov 14 2023, after _Alois P. Heinz_ *)

%Y Row sums of A216349, A216350.

%Y Cf. A000081, A215703.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Sep 04 2012

%E a(16) from _Alois P. Heinz_, May 09 2016