The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245284 For any composite number n with more than a single prime factor, take the polynomial defined by the product of the terms (x-pi)^ei, where pi are the prime factors of n with multiplicities ei. Integrate this polynomial from the minimum to the maximum value of pi. This sequence lists the numbers for which the integral is an integer. 4
 55, 85, 91, 105, 115, 133, 140, 145, 187, 195, 204, 205, 217, 231, 235, 247, 253, 259, 265, 275, 285, 295, 301, 319, 351, 355, 357, 385, 391, 403, 415, 425, 427, 429, 445, 451, 465, 469, 476, 481, 483, 493, 505, 511, 517, 535, 553, 555, 559, 565, 575, 583, 589 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The union of A203612 U A203613 U A203614. LINKS Paolo P. Lava, Table of n, a(n) for n = 1..1000 EXAMPLE n=1001. Prime factors: 7, 11 and 13: min(pi)=7, max(pi)=13. Polynomial: (x-7)*(x-11)*(x-13)= x^3-31*x^2+311*x-1001. Integral: x^4/4-31/3*x^3+311/2*x^2-1001*x. The area from x=7 to x=13 is 36. n=1005. Prime factors: 3, 5 and 67: min(pi)=3, max(pi)=67. Polynomial: (x-3)*(x-5)*(x-67)= x^3-75*x^2+551*x-1005. Integral: x^4/4-25*x^3+551/2*x^2-1005*x. The area from x=3 to x=67 is -1310720. n=1470. Prime factors: 2, 3, 5 and 7^2: min(pi)=2, max(pi)=7. Polynomial: (x-2)*(x-3)*(x-5)*(x-7)^2= x^5-24*x^4+220*x^3-954*x^2+1939*x-1470. Integral: x^6/6-24/5*x^5+55*x^4-318*x^3+1939/2*x^2-1470*x. The area from x=3 to x=67 is 0. MAPLE isA245284 := proc(n)     local pfs, x1, x2, po, x ;     if isprime(n) then         false;     else         pfs := ifactors(n)[2] ;         if nops(pfs) > 1 then             x1 := A020639(n) ;             x2 := A006530(n) ;             po := mul((x-op(1, p))^op(2, p), p=pfs) ;             int(po, x=x1..x2) ;             type(%, 'integer') ;         else             false;         end if;     end if; end proc: for n from 4 to 600 do     if isA245284(n) then         printf("%d, ", n) ;     end if; end do: # R. J. Mathar, Sep 07 2014 CROSSREFS Cf. A203612, A203613, A203614, A245435. Subsequence of A024619. Sequence in context: A135984 A140377 A065912 * A203613 A320507 A039533 Adjacent sequences:  A245281 A245282 A245283 * A245285 A245286 A245287 KEYWORD nonn,easy AUTHOR Paolo P. Lava, Aug 22 2014 EXTENSIONS Definition and example corrected by R. J. Mathar, Sep 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 02:48 EST 2022. Contains 350467 sequences. (Running on oeis4.)