login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195486
Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the sqrt(2),sqrt(5),sqrt(7) right triangle ABC.
5
6, 2, 0, 3, 3, 2, 2, 7, 2, 6, 5, 3, 0, 2, 5, 8, 3, 8, 0, 5, 5, 6, 8, 6, 8, 3, 7, 2, 0, 6, 0, 7, 6, 8, 8, 6, 4, 8, 3, 6, 1, 3, 4, 8, 2, 5, 4, 2, 4, 8, 1, 9, 1, 4, 6, 1, 8, 9, 3, 2, 4, 2, 5, 0, 2, 3, 7, 3, 1, 4, 7, 9, 0, 4, 8, 7, 0, 3, 3, 4, 1, 5, 9, 1, 5, 2, 4, 7, 6, 8, 7, 4, 2, 0, 1, 3, 7, 2, 0, 9
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
Philo(ABC,G)=.62033227265302583805568683720607688648361...
MATHEMATICA
a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195483 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195484 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195485 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195486 *)
CROSSREFS
Cf. A195304.
Sequence in context: A224842 A318138 A130143 * A111754 A154480 A087199
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved