login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195485
Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).
5
1, 2, 9, 4, 2, 3, 8, 9, 2, 3, 6, 9, 2, 2, 7, 3, 8, 7, 4, 3, 3, 4, 5, 6, 7, 8, 9, 9, 6, 5, 6, 5, 5, 0, 5, 9, 4, 6, 4, 0, 8, 1, 9, 5, 8, 2, 9, 5, 1, 9, 7, 0, 1, 8, 3, 0, 3, 2, 9, 5, 3, 4, 0, 2, 4, 7, 2, 2, 1, 7, 9, 1, 1, 7, 9, 0, 2, 0, 9, 5, 3, 6, 0, 0, 2, 8, 4, 7, 7, 3, 2, 3, 6, 3, 9, 2, 3, 2, 6, 3
OFFSET
1,2
COMMENTS
See A195304 for definitions and a general discussion.
LINKS
EXAMPLE
(C)=1.294238923692273874334567899656550594640819...
MATHEMATICA
a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195483 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195484 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195485 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195486 *)
CROSSREFS
Cf. A195304.
Sequence in context: A161934 A021038 A257818 * A336802 A011067 A135008
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved