login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195485 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)). 5

%I #8 Jan 27 2018 02:29:34

%S 1,2,9,4,2,3,8,9,2,3,6,9,2,2,7,3,8,7,4,3,3,4,5,6,7,8,9,9,6,5,6,5,5,0,

%T 5,9,4,6,4,0,8,1,9,5,8,2,9,5,1,9,7,0,1,8,3,0,3,2,9,5,3,4,0,2,4,7,2,2,

%U 1,7,9,1,1,7,9,0,2,0,9,5,3,6,0,0,2,8,4,7,7,3,2,3,6,3,9,2,3,2,6,3

%N Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

%C See A195304 for definitions and a general discussion.

%H G. C. Greubel, <a href="/A195485/b195485.txt">Table of n, a(n) for n = 1..10000</a>

%e (C)=1.294238923692273874334567899656550594640819...

%t a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;

%t f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f1 = (f[t])^(1/2) /. Part[s, 4]

%t RealDigits[%, 10, 100] (* (A) A195483 *)

%t f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f2 = (f[t])^(1/2) /. Part[s, 4]

%t RealDigits[%, 10, 100] (* (B) A195484 *)

%t f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f3 = (f[t])^(1/2) /. Part[s, 1]

%t RealDigits[%, 10, 100] (* (C) A195485 *)

%t c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)

%t RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)

%Y Cf. A195304.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Sep 19 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 09:32 EDT 2024. Contains 375786 sequences. (Running on oeis4.)