login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257818 Decimal expansion of the imaginary part of li(i), i being the imaginary unit. 4
2, 9, 4, 1, 5, 5, 8, 4, 9, 4, 9, 4, 9, 3, 8, 5, 0, 9, 9, 3, 0, 0, 9, 9, 9, 9, 8, 0, 0, 2, 1, 3, 2, 6, 7, 7, 2, 0, 8, 9, 4, 4, 6, 0, 3, 5, 2, 5, 1, 9, 2, 1, 5, 9, 0, 1, 2, 2, 7, 0, 4, 4, 3, 9, 2, 8, 3, 9, 4, 3, 5, 6, 4, 2, 1, 1, 0, 6, 0, 7, 2, 5, 0, 3, 4, 0, 8, 2, 6, 5, 3, 4, 8, 4, 9, 5, 9, 0, 9, 4, 9, 3, 4, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding real part is in A257817.
LINKS
Eric Weisstein's World of Mathematics, Logarithmic Integral
FORMULA
Equals (Pi/2)*(1+Sum_{k>=0}((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1))).
EXAMPLE
2.941558494949385099300999980021326772089446035251921590122704439...
MAPLE
evalf(Im(Li(I)), 120); # Vaclav Kotesovec, May 10 2015
evalf(Pi/2*(1+Sum(((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1)), k=0..infinity)), 120); # Vaclav Kotesovec, May 10 2015
MATHEMATICA
RealDigits[Im[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
PROG
(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
return(+Pi*I-eint1(-log(c)))); }
a=imag(li(I))
CROSSREFS
Sequence in context: A339799 A161934 A021038 * A195485 A336802 A011067
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, May 10 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)