|
|
A257818
|
|
Decimal expansion of the imaginary part of li(i), i being the imaginary unit.
|
|
4
|
|
|
2, 9, 4, 1, 5, 5, 8, 4, 9, 4, 9, 4, 9, 3, 8, 5, 0, 9, 9, 3, 0, 0, 9, 9, 9, 9, 8, 0, 0, 2, 1, 3, 2, 6, 7, 7, 2, 0, 8, 9, 4, 4, 6, 0, 3, 5, 2, 5, 1, 9, 2, 1, 5, 9, 0, 1, 2, 2, 7, 0, 4, 4, 3, 9, 2, 8, 3, 9, 4, 3, 5, 6, 4, 2, 1, 1, 0, 6, 0, 7, 2, 5, 0, 3, 4, 0, 8, 2, 6, 5, 3, 4, 8, 4, 9, 5, 9, 0, 9, 4, 9, 3, 4, 6, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding real part is in A257817.
|
|
LINKS
|
|
|
FORMULA
|
Equals (Pi/2)*(1+Sum_{k>=0}((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1))).
|
|
EXAMPLE
|
2.941558494949385099300999980021326772089446035251921590122704439...
|
|
MAPLE
|
evalf(Pi/2*(1+Sum(((-1)^k*(Pi/2)^(2*k)/(2*k+1)!/(2*k+1)), k=0..infinity)), 120); # Vaclav Kotesovec, May 10 2015
|
|
MATHEMATICA
|
RealDigits[Im[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
|
|
PROG
|
(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
return(+Pi*I-eint1(-log(c)))); }
a=imag(li(I))
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|