This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257819 Decimal expansion of the real part of li(-1). 3
 7, 3, 6, 6, 7, 9, 1, 2, 0, 4, 6, 4, 2, 5, 4, 8, 5, 9, 9, 0, 1, 0, 0, 9, 6, 5, 2, 3, 0, 1, 4, 9, 6, 7, 1, 8, 6, 9, 8, 7, 7, 4, 6, 2, 3, 2, 8, 6, 1, 8, 0, 5, 0, 2, 6, 5, 9, 5, 5, 0, 3, 4, 0, 6, 9, 2, 3, 1, 7, 5, 8, 4, 3, 1, 4, 3, 0, 5, 7, 1, 3, 8, 3, 6, 5, 8, 4, 4, 2, 7, 8, 3, 2, 6, 0, 8, 8, 2, 4, 3, 3, 5, 9, 0, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET -1,1 COMMENTS The logarithmic integral function li(z) has a cut along the negative real axis which causes therein a discontinuity in the imaginary part of li(z). The real part of li(z), however, is well behaved for any real z, except the singularity at z=+1. At z=-1, real(li(z)) attains its absolute maximum, and also its only local maximum, on the real interval (-infinity,+1). The corresponding imaginary part is described in A257820. LINKS Stanislav Sykora, Table of n, a(n) for n = -1..2000 Eric Weisstein's World of Mathematics, Logarithmic Integral Wikipedia, Logarithmic integral function FORMULA Equals gamma+log(Pi)+Sum[k=1..infinity]((-1)^k*Pi^(2*k)/(2*k)!/(2*k)). EXAMPLE 0.073667912046425485990100965230149671869877462328618050265955... MAPLE evalf(Re(Li(-1)), 120); # Vaclav Kotesovec, May 11 2015 MATHEMATICA RealDigits[Re[LogIntegral[-1]], 10, 120][[1]] (* Vaclav Kotesovec, May 11 2015 *) PROG (PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex   if(imag(c)<0, return(-Pi*I-eint1(-log(c))),   return(+Pi*I-eint1(-log(c)))); }   a=real(li(-1)) CROSSREFS Cf. A000796, A001620, A053510, A257817, A257818, A257820, A257821. Sequence in context: A019819 A215693 A197028 * A182111 A023643 A050009 Adjacent sequences:  A257816 A257817 A257818 * A257820 A257821 A257822 KEYWORD nonn,cons AUTHOR Stanislav Sykora, May 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)