OFFSET
-1,1
COMMENTS
The logarithmic integral function li(z) has a cut along the negative real axis which causes therein a discontinuity in the imaginary part of li(z). The real part of li(z), however, is well behaved for any real z, except the singularity at z=+1. At z=-1, real(li(z)) attains its absolute maximum, and also its only local maximum, on the real interval (-infinity,+1). The corresponding imaginary part is described in A257820.
LINKS
Stanislav Sykora, Table of n, a(n) for n = -1..2000
Eric Weisstein's World of Mathematics, Logarithmic Integral.
Wikipedia, Logarithmic integral function.
FORMULA
Equals gamma + log(Pi) + Sum_{k>=1} (-1)^k*Pi^(2*k)/((2*k)!*2*k).
EXAMPLE
0.073667912046425485990100965230149671869877462328618050265955...
MAPLE
evalf(Re(Li(-1)), 120); # Vaclav Kotesovec, May 11 2015
MATHEMATICA
RealDigits[Re[LogIntegral[-1]], 10, 120][[1]] (* Vaclav Kotesovec, May 11 2015 *)
PROG
(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
return(+Pi*I-eint1(-log(c)))); }
a=real(li(-1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, May 11 2015
STATUS
approved