This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257817 Decimal expansion of the real part of li(i), i being the imaginary unit. 4
 4, 7, 2, 0, 0, 0, 6, 5, 1, 4, 3, 9, 5, 6, 8, 6, 5, 0, 7, 7, 7, 6, 0, 6, 1, 0, 7, 6, 1, 4, 1, 2, 7, 8, 3, 6, 5, 0, 7, 3, 3, 0, 5, 4, 3, 0, 1, 8, 3, 6, 1, 8, 8, 1, 8, 6, 8, 3, 8, 3, 7, 1, 8, 9, 9, 3, 8, 5, 8, 0, 3, 7, 7, 6, 9, 5, 3, 1, 3, 0, 8, 5, 0, 9, 3, 3, 7, 9, 7, 0, 7, 6, 0, 4, 9, 2, 9, 2, 1, 2, 0, 0, 1, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding imaginary part is in A257818. LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Eric Weisstein's World of Mathematics, Logarithmic Integral Wikipedia, Logarithmic integral function FORMULA Equals gamma + log(Pi/2) + Sum_{k>=1}((-1)^k*(Pi/2)^(2*k)/(2*k)!/(2*k)). Equals Ci(Pi/2), the maximum value of the cosine integral along the real axis. - Stanislav Sykora, Nov 12 2016 EXAMPLE 0.47200065143956865077760610761412783650733054301836188186838371... MAPLE evalf(Re(Li(I)), 120); # Vaclav Kotesovec, May 10 2015 MATHEMATICA RealDigits[Re[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *) PROG (PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex   if(imag(c)<0, return(-Pi*I-eint1(-log(c))),   return(+Pi*I-eint1(-log(c)))); }   a=real(li(I)) CROSSREFS Cf. A001620, A019669, A094642, A257818. Sequence in context: A289523 A078220 A256040 * A246710 A139346 A133390 Adjacent sequences:  A257814 A257815 A257816 * A257818 A257819 A257820 KEYWORD nonn,cons AUTHOR Stanislav Sykora, May 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 03:17 EST 2018. Contains 318158 sequences. (Running on oeis4.)