

A078220


Smallest k such that floor(k*Pi) begins with n (Pi=3.14159...).


2



4, 7, 1, 13, 16, 2, 23, 26, 3, 32, 36, 4, 42, 45, 5, 51, 55, 6, 61, 64, 7, 71, 74, 77, 8, 83, 86, 9, 93, 96, 10, 102, 106, 11, 112, 115, 12, 121, 125, 13, 131, 134, 14, 141, 144, 147, 15, 153, 156, 16, 163, 166, 17, 172, 176, 18, 182, 185, 19, 191, 195, 20, 201, 204, 21, 211
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

a(4) = 13 as floor(13*Pi) = 40 while floor(12*Pi) = 37.


MAPLE

C := Pi; a := proc(M0, M, C) local i, d, f, g, k; description "returns the sequence 'a(n)' between 'M0' and 'M' where 'a(n)=min{k  floor(C*k) begins with n}."; d := N>`if`(N=0, [0], ListTools[Reverse](convert(N, base, 10))); f := (K, N)>`if`(d(floor(K*C))[1..min(nops(d(floor(K*C))), nops(d(N)))]=d(N), K, 0); for i from M0 to M do k := 0; while f(k, i)=0 do k := k+1; od; g(i) := f(k, i) od; return seq(g(j), j=M0..M); end proc;


CROSSREFS



KEYWORD

base,nonn


AUTHOR



EXTENSIONS

More terms from Francois Jooste (pin(AT)myway.com), Mar 10 2003


STATUS

approved



