login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078218
Smallest multiple of n that begins with the concatenation of the divisors of n (in increasing order).
2
1, 12, 132, 124, 15, 1236, 175, 1248, 1395, 12510, 1111, 12346128, 1131, 127148, 13515, 124816, 1173, 12369186, 1197, 12451020, 137214, 12112210, 12305, 1234681224, 1525, 1213264, 1392714, 1247142820, 12905, 12356101530, 13113
OFFSET
1,2
LINKS
EXAMPLE
The concatenation of the divisors of 7 is 17; 175 = 25*7 is the smallest multiple of 7 that begins with 17, so a(7) = 175.
MAPLE
cdiv:= proc(n) local D, R, j;
D:= sort(convert(numtheory:-divisors(n), list));
R:= D[1];
for j from 2 to nops(D) do
R:= R * 10^(1+ilog10(D[j])) + D[j];
od;
R
end proc:
f:= proc(n) local t, i, r;
t:= cdiv(n);
for i from 0 do
r:= n * ceil(t*10^i/n);
if r < (t+1)*10^i then return r fi
od
end proc:
map(f, [$1..50]); # Robert Israel, Oct 07 2024
PROG
(PARI) {for(n=1, 31, k=floor(log(n)/log(10))+1; d=divisors(n); v=Str(); for(i=1, matsize(d)[2], v=concat(v, Str(d[i]))); s=eval(v); t=s+1; m=floor(log(s)/log(10))+1; d=k-m; s=s*10^d; t=t*10^d; b=1; while(b>0, q=floor(s/n); while(b>0&&(p=q*n)<t, if(p>=s, print1(p, ", "); b=0, q++)); s=10*s; t=10*t))}
CROSSREFS
KEYWORD
base,nonn,look
AUTHOR
Amarnath Murthy, Nov 22 2002
EXTENSIONS
Edited and extended by Klaus Brockhaus, Dec 06 2002
STATUS
approved