login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest multiple of n that begins with the concatenation of the divisors of n (in increasing order).
2

%I #11 Oct 08 2024 07:10:12

%S 1,12,132,124,15,1236,175,1248,1395,12510,1111,12346128,1131,127148,

%T 13515,124816,1173,12369186,1197,12451020,137214,12112210,12305,

%U 1234681224,1525,1213264,1392714,1247142820,12905,12356101530,13113

%N Smallest multiple of n that begins with the concatenation of the divisors of n (in increasing order).

%H Robert Israel, <a href="/A078218/b078218.txt">Table of n, a(n) for n = 1..10000</a>

%e The concatenation of the divisors of 7 is 17; 175 = 25*7 is the smallest multiple of 7 that begins with 17, so a(7) = 175.

%p cdiv:= proc(n) local D,R,j;

%p D:= sort(convert(numtheory:-divisors(n),list));

%p R:= D[1];

%p for j from 2 to nops(D) do

%p R:= R * 10^(1+ilog10(D[j])) + D[j];

%p od;

%p R

%p end proc:

%p f:= proc(n) local t,i,r;

%p t:= cdiv(n);

%p for i from 0 do

%p r:= n * ceil(t*10^i/n);

%p if r < (t+1)*10^i then return r fi

%p od

%p end proc:

%p map(f, [$1..50]); # _Robert Israel_, Oct 07 2024

%o (PARI) {for(n=1,31,k=floor(log(n)/log(10))+1; d=divisors(n); v=Str(); for(i=1,matsize(d)[2], v=concat(v,Str(d[i]))); s=eval(v); t=s+1; m=floor(log(s)/log(10))+1; d=k-m; s=s*10^d; t=t*10^d; b=1; while(b>0,q=floor(s/n); while(b>0&&(p=q*n)<t,if(p>=s,print1(p,","); b=0,q++)); s=10*s; t=10*t))}

%Y Cf. A037278, A069872, A078810.

%K base,nonn,look

%O 1,2

%A _Amarnath Murthy_, Nov 22 2002

%E Edited and extended by _Klaus Brockhaus_, Dec 06 2002