login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069872
Numbers k such that k divides the concatenation all divisors in ascending order, i.e., k divides A037278(k).
13
1, 2, 4, 5, 6, 8, 10, 15, 16, 20, 24, 25, 30, 32, 40, 50, 60, 64, 80, 90, 96, 100, 104, 120, 124, 125, 128, 150, 160, 200, 240, 250, 255, 256, 288, 320, 360, 375, 380, 384, 400, 425, 464, 480, 495, 500, 512, 600, 618, 625, 640, 750, 795, 800, 864, 875, 960, 1000
OFFSET
1,2
COMMENTS
All the powers of 2 are terms.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..1547 (terms <= 10^10, first 500 terms from Harvey P. Dale)
EXAMPLE
16 is a term as 16 divides 124816, 24 is a term as 24 divides 1234681224.
MATHEMATICA
Select[Range[1000], Divisible[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]], #]&] (* Harvey P. Dale, Dec 31 2012 *)
PROG
(PARI) f(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278
isok(n) = f(n) % n == 0; \\ Michel Marcus, Jun 01 2019
(Magma) k:=1; sol:=[];
for u in [1..1000] do D:=Divisors(u); conc:=D[1];
for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1]; end for;
if conc mod u eq 0 then sol[k]:=u; k:=k+1; end if;
end for;
sol; // Marius A. Burtea, Jun 01 2019
CROSSREFS
Sequence in context: A175416 A190854 A362942 * A216163 A371182 A093080
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Apr 24 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003
STATUS
approved