|
|
A069871
|
|
Numbers n that divide the concatenation of n-1 and n+1.
|
|
9
|
|
|
3, 9, 11, 33, 111, 333, 1111, 3333, 11111, 33333, 111111, 142857, 333333, 1111111, 3333333, 11111111, 33333333, 111111111, 333333333, 1111111111, 3333333333, 11111111111, 33333333333, 111111111111, 142857142857, 333333333333, 1111111111111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All the numbers of the form (10^k - 1)/3 and (10^k - 1)/9 are members.
Any concatenation of 142857 with itself is part of the sequence too. - Paolo P. Lava, Nov 03 2014
These (i.e. (10^k - 1)/3 for k>=1, (10^k - 1)/9 for k>=2, and (10^(6*k) - 1)/7 for k>=1) are all the members of the sequence, apart from 9. This is because if 10^(i-1) <= x+1 < 10^i, x | 10^i*(x-1) + x + 1 iff x | 10^i - 1, and then 1 < d = (10^i - 1)/x <= (10^i - 1)/(10^(i-1)-1) < 10. Since 2,4,5,6,8 can't divide 10^i-1, d must be 3, 7 or 9. - Robert Israel, Nov 04 2014
The terms of the sequence satisfy the condition that both n-1 and n+1 must be greater than 0. If n-1=0 were admitted then 1 would also be part of the sequence. - Michel Marcus, Nov 05 2014
|
|
LINKS
|
|
|
FORMULA
|
a(1+2*j + 13*k) = (10^(1+j+6*k)-1)/9, j=0..5, k >= 0 (except for j=k=0).
a(2*j + 13*k) = (10^(j+6*k)-1)/3, j=0..5, k >= 0 (except for j=k=0 and j=1,k=0).
a(13*k - 1) = (10^(6*k)-1)/7, k >= 1.
(End)
|
|
EXAMPLE
|
3 belongs to this sequence since 3 divides 24; 11 belongs to this sequence since 11 divides 1012.
9 belongs to this sequence since 9 divides the concatenation of 8 and 10, i.e. 810.
142857 belongs to this sequence since 142857 divides the concatenation of 142856 and 142858, i.e. 142856142858/142857 = 999994.
|
|
MAPLE
|
with(numtheory): P:=proc(q) local n;
for n from 1 to q do if type(((n-1)*10^(ilog10(n+1)+1)+n+1)/n, integer)
then print(n); fi; od; end: P(10^15); # Paolo P. Lava, Nov 03 2014
# Alternative:
N:= 10: # to get all terms with at most N digits
3, 9, seq(seq((10^k-1)/d, d = `if`(k mod 6 = 0, [9, 7, 3], [9, 3])), k = 2 .. N); # Robert Israel, Nov 04 2014
|
|
MATHEMATICA
|
Select[ Range[10^8], Mod[ FromDigits[ Join[ IntegerDigits[ # - 1], IntegerDigits[ # + 1]]], # ] == 0 & ]
|
|
PROG
|
(PARI) isok(n) = eval(concat(Str(n-1), Str(n+1))) % n == 0; \\ Michel Marcus, Nov 04 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|