This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257820 Decimal expansion of the absolute value of the imaginary part of li(-1). 3
 3, 4, 2, 2, 7, 3, 3, 3, 7, 8, 7, 7, 7, 3, 6, 2, 7, 8, 9, 5, 9, 2, 3, 7, 5, 0, 6, 1, 7, 9, 7, 7, 4, 2, 8, 0, 5, 4, 4, 4, 3, 9, 4, 4, 2, 8, 6, 6, 8, 7, 0, 7, 8, 2, 0, 2, 9, 2, 2, 5, 6, 0, 7, 8, 0, 3, 0, 8, 9, 0, 0, 9, 3, 3, 0, 9, 4, 5, 2, 8, 5, 7, 8, 4, 6, 7, 2, 7, 7, 4, 9, 1, 7, 4, 0, 1, 3, 2, 9, 1, 6, 9, 2, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The logarithmic integral function li(z) has a cut along the negative real axis which causes therein a discontinuity in the imaginary part of li(z). However, the absolute value of the imaginary part is continuous and its value is a well behaved function of any real argument, excepting z=+1. The above value corresponds to |imag(li(z))| at z=-1, the point where the corresponding real part (A257819) attains its maximum within the real interval (-infinity,+1). LINKS Stanislav Sykora, Table of n, a(n) for n = 1..2000 Eric Weisstein's World of Mathematics, Logarithmic Integral Wikipedia, Logarithmic integral function FORMULA Equals Pi*(1/2 + Sum[k=0..infinity]((-1)^k*Pi^(2*k)/(2*k+1)!/(2*k+1))). EXAMPLE 3.422733378777362789592375061797742805444394428668707820292256... MAPLE evalf(Im(Li(-1)), 120); # Vaclav Kotesovec, May 11 2015 MATHEMATICA RealDigits[Im[LogIntegral[-1]], 10, 120][[1]] (* Vaclav Kotesovec, May 11 2015 *) PROG (PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex   if(imag(c)<0, return(-Pi*I-eint1(-log(c))),   return(+Pi*I-eint1(-log(c)))); }   a=imag(li(-1)) CROSSREFS Cf. A000796, A257817, A257818, A257819, A257822. Sequence in context: A205786 A213812 A143486 * A159273 A021749 A254175 Adjacent sequences:  A257817 A257818 A257819 * A257821 A257822 A257823 KEYWORD nonn,cons AUTHOR Stanislav Sykora, May 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.