OFFSET
1,1
COMMENTS
The logarithmic integral function li(z) has a cut along the negative real axis which causes therein a discontinuity in the imaginary part of li(z). However, the absolute value of the imaginary part is continuous and its value is a well behaved function of any real argument, excepting z=+1. The above value corresponds to |imag(li(z))| at z=-1, the point where the corresponding real part (A257819) attains its maximum within the real interval (-infinity,+1).
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
Eric Weisstein's World of Mathematics, Logarithmic Integral
Wikipedia, Logarithmic integral function
FORMULA
Equals Pi*(1/2 + Sum[k=0..infinity]((-1)^k*Pi^(2*k)/(2*k+1)!/(2*k+1))).
EXAMPLE
3.422733378777362789592375061797742805444394428668707820292256...
MAPLE
evalf(Im(Li(-1)), 120); # Vaclav Kotesovec, May 11 2015
MATHEMATICA
RealDigits[Im[LogIntegral[-1]], 10, 120][[1]] (* Vaclav Kotesovec, May 11 2015 *)
PROG
(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
return(+Pi*I-eint1(-log(c)))); }
a=imag(li(-1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, May 11 2015
STATUS
approved