login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205786 Least positive integer j such that n divides C(k)-C(j), where k, as in A205785, is the least number for which there is such a j, and C=A205825. 1
1, 1, 3, 4, 2, 2, 1, 4, 3, 2, 1, 4, 3, 7, 6, 2, 3, 2, 1, 5, 7, 4, 3, 6, 5, 2, 4, 8, 5, 6, 4, 8, 4, 8, 7, 4, 5, 5, 3, 6, 12, 7, 3, 6, 6, 6, 3, 8, 7, 5, 8, 2, 3, 4, 7, 8, 3, 5, 2, 6, 6, 4, 9, 8, 6, 4, 7, 8, 3, 7, 6, 9, 1, 5, 10, 9, 7, 6, 8, 8, 9, 12, 5, 8, 8, 9, 6, 6, 1, 6, 7, 6, 4, 11, 5, 8, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

For a guide to related sequences, see A204892.

LINKS

Table of n, a(n) for n=1..97.

EXAMPLE

1 divides C(2)-C(1) -> k=2, j=1;

2 divides C(3)-C(1) -> k=3, j=1;

3 divides C(4)-C(3) -> k=4, j=3;

4 divides C(5)-C(4) -> k=5, j=4;

5 divides C(4)-C(2) -> k=4, j=2.

MATHEMATICA

s = Table[n!/Ceiling[n/2]!, {n, 1, 120}];

lk = Table[

  NestWhile[# + 1 &, 1,

   Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,

    Length[s]}]

Table[NestWhile[# + 1 &, 1,

  Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]

(* Peter J. C. Moses, Jan 27 2012 *)

CROSSREFS

Cf. A204892, A205825.

Sequence in context: A096411 A228340 A227004 * A213812 A143486 A257820

Adjacent sequences:  A205783 A205784 A205785 * A205787 A205788 A205789

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 18:41 EST 2018. Contains 299381 sequences. (Running on oeis4.)