login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205784 Least positive integer j such that n divides C(k)-C(j), where k, as in A205782, is the least number for which there is such a j, and C=A205824. 0
1, 2, 1, 3, 2, 2, 3, 3, 1, 2, 4, 4, 5, 3, 2, 5, 6, 2, 7, 3, 4, 4, 8, 5, 2, 5, 2, 3, 10, 2, 1, 6, 4, 6, 3, 4, 2, 7, 5, 3, 11, 4, 3, 4, 2, 8, 8, 5, 3, 2, 6, 5, 6, 2, 4, 3, 7, 10, 7, 4, 2, 6, 4, 6, 6, 4, 2, 6, 8, 3, 9, 5, 8, 2, 7, 7, 4, 5, 2, 6, 7, 11, 10, 4, 6, 3, 10, 5, 9, 2, 5, 8, 1, 8, 7, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For a guide to related sequences, see A204892.

LINKS

Table of n, a(n) for n=1..96.

EXAMPLE

1 divides C(2)-C(1) -> k=2, j=1

2 divides C(3)-C(2) -> k=3, j=2

3 divides C(2)-C(1) -> k=2, j=1

4 divides C(4)-C(3) -> k=4, j=3

5 divides C(3)-C(2) -> k=3, j=2

MATHEMATICA

s = Table[(3 n)!/(3 n*n!*(n + 1)!), {n, 1, 120}] ;

lk = Table[

  NestWhile[# + 1 &, 1,

   Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,

    Length[s]}]

Table[NestWhile[# + 1 &, 1,

  Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]

(* Peter J. C. Moses, Jan 27 2012 *)

CROSSREFS

Cf. A204892, A205824.

Sequence in context: A133924 A023135 A191654 * A066272 A237130 A058773

Adjacent sequences:  A205781 A205782 A205783 * A205785 A205786 A205787

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 13:18 EST 2018. Contains 299623 sequences. (Running on oeis4.)