login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327983
Run lengths in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
6
2, 1, 3, 2, 2, 3, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 4, 4, 3, 1, 1, 1, 1, 3, 5, 1, 2, 1, 1, 2, 3, 3, 3, 2, 1, 2, 1, 2, 1, 1, 7, 1, 3, 5, 1, 3, 1, 1, 2, 3, 3, 3, 1, 1, 1, 3, 5, 2, 2, 1, 3, 2, 2, 4, 2, 6, 6, 7, 1, 2, 2, 1, 1, 2, 1, 3, 5, 1, 1, 2, 3, 2
OFFSET
1,1
EXAMPLE
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
0: (1)
1: 1(1)1
2: 11(0)01
3: 110(1)111
4: 1100(1)0001
5: 11011(1)10111
6: 110010(0)001001
7: 1101111(0)0111111
8: 11001000(1)11000001
9: 110111101(1)001000111
10: 1100100001(0)1111011001
11: 11011110011(0)10000101111
12: 110010001110(0)110011010001
13: 1101111011001(1)1011100110111
When noting up the lengths of consecutive identical values ("runs") in its central column (indicated here with parentheses), we see that there are two ones at first, followed by one zero, followed by three ones, then two zeros, etc, and so we obtain the terms on this sequence: 2, 1, 3, 2, 2, 3, ...
MATHEMATICA
Length /@ Split@ CellularAutomaton[30, {{1}, 0}, {105, {{0}}}] (* Michael De Vlieger, Oct 04 2019 *)
PROG
(PARI)
up_to = 105;
A269160(n) = bitxor(n, bitor(2*n, 4*n));
A327983list(up_to) = { my(v=vector(up_to), s=1, oc=s, nc, n=0, on=n, k=0); while(k<up_to, n++; s = A269160(s); nc = (s>>n)%2; if(nc!=oc, oc=nc; k++; v[k] = (n-on); on=n)); (v); }
v327983 = A327983list(up_to);
A327983(n) = v327983[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved