OFFSET
1,2
COMMENTS
Number of factors in the factorization of the polynomial x^n-1 over GF(3). - T. D. Noe, Apr 16 2003
REFERENCES
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, p. 65.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|m} phi(d)/ord(3, d), where m is n with all factors of 3 removed. - T. D. Noe, Apr 19 2003
a(n) = (1/ord(3,m))*Sum_{j = 0..ord(3,m)-1} gcd(3^j - 1, m), where m is n with all factors of 3 removed. - Nihar Prakash Gargava, Nov 14 2018
EXAMPLE
a(15) = 2 because (1) the function 3x mod 15 has the two cycles (0),(3,9,12,6) and (2) the factorization of x^15-1 over integers mod 3 is (2+x)^3 (1+x+x^2+x^3+x^4)^3, which has two unique factors. Note that the length of the cycles is the same as the degree of the factors.
MATHEMATICA
Table[Length[FactorList[x^n - 1, Modulus -> 3]] - 1, {n, 100}]
CountFactors[p_, n_] := Module[{sum=0, m=n, d, f, i}, While[Mod[m, p]==0, m/=p]; d=Divisors[m]; Do[f=d[[i]]; sum+=EulerPhi[f]/MultiplicativeOrder[p, f], {i, Length[d]}]; sum]; Table[CountFactors[3, n], {n, 100}]
PROG
(PARI) a(n)={sumdiv(n/3^valuation(n, 3), d, eulerphi(d)/znorder(Mod(3, d))); }
vector(100, n, a(n)) \\ Joerg Arndt, Jan 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved