login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023142 Number of cycles of function f(x) = 10x mod n. 10
1, 1, 3, 1, 1, 3, 2, 1, 9, 1, 6, 3, 3, 2, 3, 1, 2, 9, 2, 1, 6, 6, 2, 3, 1, 3, 15, 2, 2, 3, 3, 1, 18, 2, 2, 9, 13, 2, 9, 1, 9, 6, 3, 6, 9, 2, 2, 3, 3, 1, 6, 3, 5, 15, 6, 2, 6, 2, 2, 3, 2, 3, 18, 1, 3, 18, 3, 2, 6, 2, 3, 9, 10, 13, 3, 2, 17, 9, 7, 1, 21, 9, 3, 6, 2, 3, 6, 6, 3, 9, 16, 2, 9, 2, 2, 3, 2, 3, 54, 1, 26 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = Sum_{d|m} phi(d)/ord(10, d), where m is n with all factors of 2 and 5 removed. - T. D. Noe, Apr 21 2003

EXAMPLE

a(12) = 3 because the function 10x mod 12 has the three cycles (0),(1,10,4),(2,8).

MATHEMATICA

CountFactors[p_, n_] := Module[{sum=0, m=n, d, f, i, ps, j}, ps=Transpose[FactorInteger[p]][[1]]; Do[While[Mod[m, ps[[j]]]==0, m/=ps[[j]]], {j, Length[ps]}]; d=Divisors[m]; Do[f=d[[i]]; sum+=EulerPhi[f]/MultiplicativeOrder[p, f], {i, Length[d]}]; sum]; Table[CountFactors[10, n], {n, 100}]

PROG

(PARI) a(n)=n/=2^valuation(n, 2)*5^valuation(n, 5); sumdiv(n, d, eulerphi(d)/znorder(Mod(10, d))) \\ Charles R Greathouse IV, Apr 24 2013

CROSSREFS

Cf. A000374, A023135-A023142.

Sequence in context: A176514 A238559 A077196 * A225335 A229166 A143159

Adjacent sequences:  A023139 A023140 A023141 * A023143 A023144 A023145

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 23:39 EDT 2018. Contains 316405 sequences. (Running on oeis4.)