The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023145 Numbers k such that prime(k) == 3 (mod k). 13
 1, 2, 4, 7, 8, 31, 32, 34, 74, 76, 1052, 6455, 15928, 251707, 251765, 4124458, 27067012, 27067120, 69709718, 69709871, 69709877, 69709934, 69709943, 69709954, 69709963, 69709964, 465769810, 8179002124, 145935689390, 382465573486, 885992692751818, 885992692751822 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Giovanni Resta, Table of n, a(n) for n = 1..46 EXAMPLE 204475053103 = prime(8179002124) and 204475053103 = 25*8179002124 + 3. MATHEMATICA NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == 3, Print[n]], {n, 1, 10^9}] (* Robert G. Wilson v, Feb 18 2004 *) Select[Range[100000], Mod[Prime[#] - 3, #] == 0 &] (* T. D. Noe, Feb 05 2013 *) PROG (Sage) def A023145(max) :     terms = []     p = 2     for n in range(1, max+1) :         if (p - 3) % n == 0 : terms.append(n)         p = next_prime(p)     return terms # Eric M. Schmidt, Feb 05 2013 CROSSREFS Cf. A171430, A092045, A023143, A023144, A023146, A023147, A023148, A023149, A023150, A023151, A023152. Sequence in context: A122980 A012985 A291178 * A094446 A071790 A199465 Adjacent sequences:  A023142 A023143 A023144 * A023146 A023147 A023148 KEYWORD nonn AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Feb 18 2004 2 more terms from Giovanni Resta, Feb 22 2006 a(29) from Robert G. Wilson v, Feb 22 2006 First two terms inserted by Eric M. Schmidt, Feb 05 2013 Terms a(30) and beyond from Giovanni Resta, Feb 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)