OFFSET
0,2
COMMENTS
Lexicographically earliest monotonic left inverse of A327984.
Proving (or disproving) that Lim_{n->inf} a(n)/n = 1/2 would solve the Problem 2: "Does each color of cell occur on average equally often in the center column?" of Stephen Wolfram's 2019 prize announcement.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..100000
Stephen Wolfram, Announcing the Rule 30 Prizes, 2019
FORMULA
EXAMPLE
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
---------------------------------------------- a(n)
0: (1) 1
1: 1(1)1 2
2: 11(0)01 2
3: 110(1)111 3
4: 1100(1)0001 4
5: 11011(1)10111 5
6: 110010(0)001001 5
7: 1101111(0)0111111 5
8: 11001000(1)11000001 6
9: 110111101(1)001000111 7
10: 1100100001(0)1111011001 7
11: 11011110011(0)10000101111 7
12: 110010001110(0)110011010001 7
13: 1101111011001(1)1011100110111 8
We count how many 1's have occurred so far in the central column (indicated with parentheses), giving us the terms: 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, ....
MATHEMATICA
A327982list[nmax_]:=Accumulate[CellularAutomaton[30, {{1}, 0}, {nmax, {{0}}}]]; A327982list[100] (* Paolo Xausa, May 30 2023 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved