login
A327982
Partial sums of A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
4
1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 13, 14, 14, 15, 15, 16, 17, 18, 18, 18, 19, 20, 21, 21, 22, 22, 23, 23, 24, 25, 25, 25, 25, 25, 26, 27, 27, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 35, 36, 37, 38, 39, 39, 39, 39, 39, 40, 41, 42, 43, 43, 43, 43, 44, 44, 45, 45, 46
OFFSET
0,2
COMMENTS
Lexicographically earliest monotonic left inverse of A327984.
Proving (or disproving) that Lim_{n->inf} a(n)/n = 1/2 would solve the Problem 2: "Does each color of cell occur on average equally often in the center column?" of Stephen Wolfram's 2019 prize announcement.
FORMULA
a(0) = A051023(0) = 1, for n > 0, a(n) = A051023(n) + a(n-1).
For all n >= 0, a(A327984(n)) = n.
EXAMPLE
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
---------------------------------------------- a(n)
0: (1) 1
1: 1(1)1 2
2: 11(0)01 2
3: 110(1)111 3
4: 1100(1)0001 4
5: 11011(1)10111 5
6: 110010(0)001001 5
7: 1101111(0)0111111 5
8: 11001000(1)11000001 6
9: 110111101(1)001000111 7
10: 1100100001(0)1111011001 7
11: 11011110011(0)10000101111 7
12: 110010001110(0)110011010001 7
13: 1101111011001(1)1011100110111 8
We count how many 1's have occurred so far in the central column (indicated with parentheses), giving us the terms: 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, ....
MATHEMATICA
A327982list[nmax_]:=Accumulate[CellularAutomaton[30, {{1}, 0}, {nmax, {{0}}}]]; A327982list[100] (* Paolo Xausa, May 30 2023 *)
PROG
(PARI)
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160.
A110240(n) = if(!n, 1, A269160(A110240(n-1)));
A051023(n) = ((A110240(n)>>n)%2);
A327982(n) = (A051023(n)+if(0==n, 0, A327982(n-1)));
(PARI)
up_to = 105;
A269160(n) = bitxor(n, bitor(2*n, 4*n));
A327982list(up_to) = { my(v=vector(1+up_to), s=1, n=0, c=0); while(n<=up_to, c += (s>>n)%2; n++; v[n] = c; s = A269160(s)); (v); }
v327982 = A327982list(up_to);
A327982(n) = v327982[1+n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved